Maulee Sheth

Ph.D., Biomedical Engineering | Boston, United States

⊠shethme@mail.uc.edu | linkedin.com/in/shethmaulee | [×]MauleeXSheth | Google Scholar | Personal Website

Training & Education

Tufts University Incoming Postdoctoral Fellow, Department of Biomedical Engineering Advisor: *Prof. Shelly Peyton*

University of Cincinnati

PhD Candidate, Department of Biomedical Engineering (4.0/4.0) Advisor: *Prof. Leyla Esfandiari* UC CEAS highlight

Purdue University

Bachelor of Science, School of Mechanical Engineering (3.4/4.0) Advisor: *Prof. Cagri Savran*

Research Experience

University of Cincinnati

Graduate Researcher, Esfandiari Lab

<u>Project 1/Dissertation:</u> Spheroids to Vesicles – Decoding Matrix Stiffness in a 3D Head and Neck Cancer Model **Impact:** Identified mechanosensitive Piezo1 and TRPV4 ion channels' role in the reception of matrix stiffness stimuli in 3D spheroids. Conducted a pioneering study on the influence of biophysical cues on EV secretion and cargo in 3D. Identified novel mechanosensitive biomarkers within cancer spheroid-derived EVs, providing insight into their potential as predictive biomarkers for cancer progression.

<u>Project 2:</u> Remote Activation of Piezoelectric Scaffolds for Peripheral Nerve Regeneration **Impact:** Demonstrated how controlled electric stimulation can influence cellular alignment and differentiation, opening avenues for enhancing tissue engineering and regenerative medicine applications.

Project 3: Impedance Spectroscopy for Radiation Biosensing

Impact: Will contribute to the utility of a rapid, non-invasive impedance spectroscopy technique for monitoring radiotherapy response, with potential applications in drug screening and personalized medicine.

Purdue University

Undergraduate Researcher, Savran Lab Oct. 2019 – May 2021 <u>Project 1:</u> Deterministic Culturing of Single Cells in 3D **Impact:** Developed a highly efficient and effective method to generate tumoroids from isolated, individually targeted single cells, providing insights into both inter- and intratumor heterogeneity.

<u>Project 2:</u> Critical Review of Single-Cell Culture Technologies

Impact: Will provide a critical analysis that serves as a valuable resource for researchers aiming to design single-cell culturing technologies, particularly in cancer and stem cell research.

Publications & Patents (*Indicates co-authorship)

[1] **Sheth M**, Sharma M, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Esfandiari L. (2024). Three-Dimensional Matrix Stiffness Modulates Mechanosensitive and Phenotypic Alterations in Oral Squamous Cell Carcinoma Spheroids. *APL Bioengineering*. 8:3. <u>10.1063/5.0210134</u>

July 2025

Aug. 2025

Boston, MA

Cincinnati, OH Aug. 2021 – Aug. 2025

West Lafayette, IN Aug. 2017 – May 2021

Aug. 2021 – Aug. 2025

Cincinnati, OH

West Lafayette, IN

[2] Sheth M, Sharma M, Supasek K, Lehn M, Takebe T, Takiar V, Wise-Draper T, Chutipongtanate S, Esfandiari L. (2025). Matrix stiffness modulated release of spheroid-derived extracellular vesicles and discovery of Piezo1 cargo. *bioRxiv*. <u>10.1101/2025.01.13.632826</u> – <u>Under peer review (2025)</u>

[3] Sharma M^{*}, **Sheth M**^{*}, Poling H, Kuhnell D, Langevin S, Esfandiari L. (2023). Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. *Scientific Reports.* 13:18293 <u>10.1038/s41598-023-45409-4</u>

[4] **Sheth M** and Esfandiari L. (2022). Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. *Frontiers in Oncology*. 12:846917. <u>10.3389/fonc.2022.846917</u>

[5] Macke G, **Sheth M**, Sharma M, Lehn M, Takiar V, Wise-Draper T, Esfandiari L. Impedance Spectroscopy for Radiation Biosensing in 3D Cancer Spheroids – <u>In preparation (2025)</u>

[6] Sharma M^{*}, Supasek K^{*}, Sheth M, Chutipongtanate S, Esfandiari L. Distinct molecular profiles in Schwann cell-derived extracellular vesicles reveal stage-specific contributions to peripheral nerve regeneration – <u>In preparation (2025)</u>
[7] Bryan AE^{*}, Krutko M^{*}, Westphal J, Sheth M, Esfandiari L, Harris GM. (2023). Ultrasound-activated piezoelectric polyvinylidene fluoride-trifluoroethylene scaffolds for tissue engineering applications. *Military Medicine*.
10.1093/milmed/usad018

[8] Jain R, Sheth M, Savran CA. Review of single cell culture technologies – In preparation (2025)

[9] Krutko M, Poling H, **Sheth M**^{*}, Supasek K^{*}, Bryan A, Sharma M, Singh A, Reza H, Weikenheiser-Brokamp K, Takebe T, Helmrath M, Harris G, Esfandiari L. Thermal Annealing Enhances Piezoelectricity and Regenerative Potential of PVDF-TrFE Nanofiber Scaffolds. *Advanced Materials Technologies.* – <u>in press (2025)</u>

[10] Poling H, Singh A, Supasek K^{*}, **Sheth M**^{*}, Krutko M, Reza A, Srivastava K, Wells J, Helmrath M, Esfandiari L. Promoting Human Intestinal Organoid Formation and Stimulation Using Piezoelectric Nanofiber Matrices – <u>Under</u> <u>revision (2025)</u>

[11] Brodersen K, Bywater E, Lanter A, Schennum H, Furia K, Sheth M, Kiefer N, Cafferty B, Rao A, Garcia J, Warsinger D.
 (2021). Direct-drive ocean wave-powered batch reverse osmosis. *Desalination*. <u>523</u>:

115393.10.1016/j.desal.2021.115393

[12] Esfandiari L and **Sheth M**. Piezo-1 Activation in Cancer Spheroid-Derived Small Extracellular Vesicles – Provisional patent – Filed (2024, 2025)

Research Talks & Presentations (Select) (U indicates presenting author)

[1] <u>Sheth M</u>, Sharma M, Supasek K, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Chutipongtanate S, Esfandiari L. Esfandiari L. (June 2024). Matrix stiffness drives piezo-1 activation in three-dimensional head and neck cancer spheroids and derived small extracellular vesicles. *TERMIS, Seattle* – **Oral presentation (top 10% abstract)**

[2] Sheth M, Sharma M, Poling H, Kuhnell D, Langevin S, Esfandiari L. (Oct. 2023). Multiparametric analysis of small extracellular vesicles purified by a rapid and label-free lab on a chip device. *BMES, Seattle* – Oral presentation
[3] Sheth M, Sharma M, Shi L, Zhang Y, Esfandiari L. (Dec. 2022). A Label-free Microelectronic Device for Purification and Characterization of Extracellular Vesicles. *IEEE EMBS Micro and Nanotech in Med., Kapolei, HI* – Best poster presentation
[4] Sheth M, Sharma M, Supasek K, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Chutipongtanate S, Esfandiari L. (Oct. 2024). Three-dimensional matrix stiffness drives piezo1 activity in oral squamous cell carcinoma spheroids and derived small extracellular vesicles. *BMES, Baltimore* – Poster presentation

[5] <u>Sheth M</u>, Sharma M, Supasek K, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Chutipongtanate S, Esfandiari L. (May 2024). Three-dimensional matrix stiffness drives piezo1 activation in cancer spheroid-derived small extracellular vesicles. *ISEV, Melbourne* – **Poster presentation**

[6] <u>Sheth M</u>, Sharma M, Esfandiari L. (Feb. 2024). Matrix stiffness induced piezo-1 activation promotes metastatic potential in three-dimensional head and neck cancer spheroids. *BPS, Philadelphia* – Poster presentation
[7] <u>Sheth M</u>, Sharma M, Kuhnell D, Langevin S, Esfandiari L. (May 2023). Multiparametric analysis of small extracellular vesicles purified by a rapid and label-free lab on a chip device. *ISEV, Seattle* – Poster presentation
[8] <u>Sheth M</u>, Krutko M, Lehn M, Takiar V, Wise-Draper T, Esfandiari L. (Feb. 2023). Alteration of membrane potential of head and neck cancer cells using a piezoelectric nanofiber interface. *BPS, San Diego* – Poster presentation
[9] <u>Sheth M</u>, Krutko M, Lehn M, Bryan A, Harris G, Takiar V, Wise-Draper T, Esfandiari L. (Oct. 2022). Electrical stimulation of head and neck cancer cells using a piezoelectric nanofiber interface. *BMES, San Antonio* – Poster presentation

Awards & Fellowships

2024	Graduate Student Engineer of the Month	Univ. of Cincinnati
2024	Scientific Excellence Award Nominee – abstract based nomination	TERMIS-AM SYIS
2024	Excellence in Teaching Award for Graduate Assistants – honorable mention	Univ. of Cincinnati
2020	Mechanical Engineering Summer Research Fellowship	Purdue Univ.
Mento	oring & Teaching	
Researc	h Mentorship	
Greg Macke, MS student, University of Cincinnati		Aug. 2023 – Aug. 2025
Adjunct	Lecturer, Mechanics of Materials	
Biomedical Engineering, University of Cincinnati		May 2022 – Aug. 2022
Led a cla	ass of 70 students, managing all aspects of instruction, including lectures, assignmer	nts, and assessments, while
fosterin	g an engaging learning environment using a flipped classroom approach.	, , ,
Graduat	te Teaching Assistant, University of Cincinnati	
Biomedical Microsystems		Aug. 2024 – Dec. 2024
Functional Tissue Engineering		Aug. 2023 – Dec. 2023
Statics a	nd Dynamics	Jan. 2022 – May 2022
Intro to	BME in a Clinical Environment	Aug. 2021 – Dec. 2021
Summe	r High School Research Mentor, University of Cincinnati	July 2023, July 2024
Purdue Mechanical Engineering Mentor		July 2020 – May 2021
Underg	raduate Teaching Assistant, Transforming Ideas to Innovation I & II	
First Yea	ar Engineering, Purdue University	Jan. 2019 – May 2021
Organ	izations & Positions	
Foundi	ng President	
University of Cincinnati Student Chapter of the Biophysical Society		lan, 2023 – lan, 2025
Launche	ed a platform to connect researchers across UC's College of Engineering. College of I	Medicine, and Cincinnati
Children	's Hospital, promoting interdisciplinary collaboration in biophysical research.	,
Early Ca	areer Member	

•	International Society for Extracellular Vesicles (ISEV)	Jan. 2023 – Present
٠	Student Network for Extracellular Vesicles (SNEV)	May 2023 – Present
٠	Biophysical Society (BPS)	Oct. 2022 – Oct. 2024
٠	Biomedical Engineering Society (BMES)	May 2022 – Present
٠	Tissue Engineering and Regenerative Medicine International Society (TERMIS)	Jan. 2024 – Present